1、99999是三的倍数 。
2、解题方法:设这个数表示成x=10^n*an+10^(n-1)*a(n-1)+...+a1(一共有n位)
【99999是不是三的倍数】那么只要证明x与a1+a2+a3+...+an对于3同余即可
显然10^n*an-an=an*99999.9999能被3整除
所以10^n*an=an(mod3)
同理10^(n-1)*a(n-1)=a(n-1)(mod3)
所以x=10^n*an+10^(n-1)*a(n-1)+...+a1=an+a(n-1)+...+a1(mod3)
也就是x除以3的余数与x的各位数字和除以3的余数相同
所以如果各位数字和能被3整除,那么这个数就能被3整除 。
以上就是99999是不是三的倍数的内容啦,希望本文可以帮到你!
- 三星手机出现乱码怎么开机
- 脉搏一分钟跳101是不是正常范围
- 三林塘肉皮如何发
- 三星手机s6怎么格式化
- 什么是三伏天三伏天要做什么
- 4月1日海南三亚疫情哪里封了?三亚封闭小区最新名单
- 2022海南三亚疫情什么时候解封
- 三杯乳鸽彩蔬饭怎么做
- 三国演义孙坚是怎么死的
- 清明节可以在家上香吗 清明节上香为何要上三柱