支持向量机模型的基本原理是什么

基本原理:
是将分类点正确区分 , 使得分隔的距离最大,可以转化为凸二次规划问题来求解 。
概念:
支持向量机是常见的一种判别方法,在机器学习领域,是一个有监督的学习模型 , 通常用来进行模式识别、分类以及回归分析 。
主要思想:
1、它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能;
【支持向量机模型的基本原理是什么】2、它基于结构风险最小化理论之上在特征空间中构建最优超平面,使得学习器得到全局最优化,并且在整个样本空间的期望以某个概率满足一定上界 。

以上就是支持向量机模型的基本原理是什么的内容啦,希望本文可以帮到你!